歡迎訪問紫外激光切割機(jī)、PCB激光切割機(jī)、ITO激光刻蝕機(jī)廠家,武漢元祿光電技術(shù)有限公司官方網(wǎng)站!
INFORMATION
發(fā)布時(shí)間:2020-10-28 來源:元祿光電
微納米制造技術(shù)已成為各國(guó)競(jìng)相角逐的科技競(jìng)技場(chǎng),是興國(guó)之器和立國(guó)之本。傳統(tǒng)的微納制造技術(shù)可以被細(xì)分為光刻(軟壓印,反應(yīng)離子刻蝕等)和非光刻技術(shù)(激光加工,碎裂,褶皺,折疊等),每種工藝能針對(duì)不同材料進(jìn)行不同精度的加工制造,但是每種工藝也有其技術(shù)局限性。如何打破現(xiàn)有工藝的限制,推動(dòng)新型微納米制造技術(shù)的開發(fā)和新型微納結(jié)構(gòu)的制備已成為一項(xiàng)意義深遠(yuǎn)且極具挑戰(zhàn)性的課題。近期,日本理化學(xué)研究所(RIKEN)先進(jìn)光子中心(RAP)張東石博士,杉岡幸次教授和伊藤嘉浩教授等研究人員在《極端制造》期刊(International Journal of Extreme Manufacturing, IJEM)上共同發(fā)表《飛秒激光液相沖擊碎裂微納加工硅材料及其生物應(yīng)用》的文章,報(bào)道了一種新型飛秒激光微納加工工藝,將傳統(tǒng)的飛秒激光液相加工,飛秒激光液相沖擊和碎裂工藝相結(jié)合,首次實(shí)現(xiàn)了飛秒激光液相沖擊碎裂微納加工易碎硅材料,制備了現(xiàn)有工藝無法實(shí)現(xiàn)的多種三維 en échelon碎裂微納結(jié)構(gòu),并擴(kuò)展了該新工藝在多孔材料結(jié)構(gòu)制備和干細(xì)胞形貌調(diào)控方面的應(yīng)用。
研究背景
飛秒激光與物質(zhì)的相互作用會(huì)產(chǎn)生瞬時(shí)的高溫高壓環(huán)境和超強(qiáng)的沖擊波,已被開發(fā)成飛秒激光微納加工工藝和飛秒激光沖擊工藝,分別用于材料的表面微納多尺度結(jié)構(gòu)制備和改善材料尤其是金屬材料的力學(xué)特性。在液態(tài)環(huán)境中,飛秒激光微納加工更易產(chǎn)生小于200nm周期的高頻表面周期納米結(jié)構(gòu)(HSFLs) ,還可利用激光誘導(dǎo)水分解產(chǎn)生的粘附性氣泡進(jìn)行水下氣泡輔助加工制備新型周期性扇形微納復(fù)合結(jié)構(gòu)。飛秒激光液相沖擊由于液體環(huán)境對(duì)沖擊波的傳輸限制作用,可極大地增強(qiáng)沖擊效果。迄今,關(guān)于飛秒激光液相微納加工易碎材料(如硅材料)的報(bào)道很多,所制備的結(jié)構(gòu)已廣泛應(yīng)用于光學(xué)、生物等多學(xué)科交叉領(lǐng)域。但是關(guān)于飛秒激光沖擊易碎材料的報(bào)道極少,主要是由于工藝的不可控性和碎裂后的材料對(duì)實(shí)際應(yīng)用幾乎毫無任何意義。
硅材料廣泛應(yīng)用于太陽能電池,太陽能硅基電池板在運(yùn)輸和安裝過程中受震動(dòng)的影響容易產(chǎn)生碎裂,所以硅材料的碎裂研究引起了學(xué)術(shù)界的興趣。2018年里昂大學(xué)的科研人員在Nature Communication雜志上報(bào)道了碎裂速度和表面紋痕的相互關(guān)系,如圖1所示。不同碎裂速度會(huì)產(chǎn)生不同形貌的碎裂結(jié)構(gòu)條紋,慢碎裂(傳輸速度1200 m/s)形成“鉤子”型紋痕,快碎裂(傳輸速度3600 m/s)形成“弧形”紋痕。通過維氏預(yù)壓痕和彎曲碎裂產(chǎn)生的紋痕表面,僅有納米尺度的高度,而且還很難形成連續(xù)的大面積陣列,所以目前這種碎裂結(jié)構(gòu)的實(shí)用性還顯有報(bào)道。如何能夠?qū)⑦@種碎裂紋痕3D微納織構(gòu)化仍是一項(xiàng)具有挑戰(zhàn)性的課題。鑒于此結(jié)構(gòu)非常類似于自然界地質(zhì)學(xué)大量存在的梯度褶曲碎裂結(jié)構(gòu),新型微納碎裂制造工藝的開發(fā)不僅能推動(dòng)碎裂結(jié)構(gòu)的相關(guān)基礎(chǔ)研究(比如形貌控制,碎裂機(jī)理和力學(xué)分析)和多領(lǐng)域?qū)嵱眯匝芯?,還有助于增進(jìn)對(duì)地質(zhì)結(jié)構(gòu)形成機(jī)理的理解。
圖1(a)碎裂強(qiáng)度與傳播速度的關(guān)系。(b,c)低速和高速的硅材料碎裂紋痕。經(jīng)許可轉(zhuǎn)載。版權(quán)所有(2018)Nature出版社。
在本文中日本理化學(xué)研究所的科研人員提出了一種飛秒激光液相沖擊碎裂微納加工(下文簡(jiǎn)稱飛秒激光碎裂加工)的新工藝。在Opto-Electronic Advances 2, 190002 (2019)的報(bào)道中,本文作者觀測(cè)到液相水環(huán)境下,采用600mW高能量的飛秒激光,通過調(diào)節(jié)掃描間距和掃描速度,可以制備HSFLs全覆蓋的微米平行溝槽,如圖2所示。在飛秒激光微納加工過程中,數(shù)十微米深度的平行溝槽必將誘導(dǎo)等離子體增強(qiáng)效應(yīng)并極大地限制超強(qiáng)沖擊波的傳輸,在此種情況下沖擊波的能量將幾乎完全作用于溝槽側(cè)壁,引起平行溝槽的破裂,實(shí)現(xiàn)飛秒激光加工、飛秒激光沖擊和沖擊波碎裂工藝的同時(shí)進(jìn)行。由于很難實(shí)時(shí)監(jiān)測(cè)飛秒激光碎裂加工的動(dòng)力學(xué)過程,研究人員采用掃描電鏡(SEM)對(duì)不同碎裂形貌進(jìn)行了表征歸納,揭示了飛秒激光碎裂加工的典型形貌,平行溝槽的碎裂路徑,沖擊波的納米重構(gòu)效應(yīng),并探索了飛秒激光碎裂加工在制備新型多孔結(jié)構(gòu)以及碎裂結(jié)構(gòu)在生物干細(xì)胞形貌控制方面的潛在應(yīng)用。在文末作者澄清了飛秒激光沖擊工藝與新型飛秒激光沖擊碎裂加工工藝的區(qū)別。
圖2 飛秒激光液相加工生成的高頻納米周期結(jié)構(gòu)(HSFLs)全覆蓋的平行溝槽結(jié)構(gòu)(激光能量600mW,掃描速度0.1和0.5mm/s,掃描間隔20微米)。
最新進(jìn)展
圖3 飛秒激光碎裂加工形成的微納結(jié)構(gòu)俯視圖和不同角度側(cè)視圖,不同掃描速度下(0.2,0.5和1mm/s,恒定激光能量(700mW)和恒定掃描間距(15微米)。(a-c)綠色箭頭指示部分碎裂溝槽。(j-l)粉色箭頭代表“鉤狀”結(jié)構(gòu)的形成。
碎裂微納結(jié)構(gòu)俯視圖和側(cè)視圖 圖3展示了利用高激光能量的飛秒激光(脈寬457 fs, 波長(zhǎng)1045 nm, 重復(fù)頻率100 kHz, 激光能量700mW)在不同掃描速度下(0.2,0.5和1mm/s)和恒定掃描間距(15微米)獲得硅微納結(jié)構(gòu)的俯視圖和不同角度的側(cè)視圖??梢钥吹狡叫袦喜蹘缀跬耆榱眩纬砂纪共黄角蚁鄬?duì)光滑的表面結(jié)構(gòu)。在平行溝槽中間生成多種形狀的多孔結(jié)構(gòu)(圖3a-f),孔的不均勻性代表飛秒激光碎裂加工過程的隨機(jī)性和不可控性。圖3g-i展示的未被完全碎裂的溝槽側(cè)視圖推斷表明平行溝槽的深度達(dá)到數(shù)十微米,足夠?qū)е碌入x子體增強(qiáng)效應(yīng)和限制沖擊波的傳輸。圖3j-l發(fā)現(xiàn)了類似于圖1b所示慢碎裂生成的“鉤子”型紋痕,暗示了飛秒激光碎裂加工通常誘導(dǎo)低速碎裂而不是高速碎裂,證明了三維碎裂加工的可能性,突破了傳統(tǒng)工藝的限制。
圖4 En échelon 微紋痕及納米拋物線狀紋痕。
En échelon 微紋痕及納米拋物線狀紋痕 圖4展現(xiàn)了典型的en échelon微紋痕及其納米拋物線狀紋痕。碎裂起始于溝槽的一個(gè)角落(圖4a),然后沿著平行溝槽的方向傳輸。在碎裂傳輸?shù)倪^程中,裂紋的強(qiáng)度和方向會(huì)不斷變化,產(chǎn)生一系列en échelon微紋痕及其納米拋物線狀紋痕。碎裂紋痕可分為三種典型的結(jié)構(gòu),如圖4b三種不同顏色所表示。紅色標(biāo)識(shí)勾畫了一系列始于碎裂起始點(diǎn)(starting point)的en échelon微紋痕,在其間分布著大面積的納米拋物線狀紋痕(綠色標(biāo)識(shí)區(qū)域),如圖4d-f所示。粉色標(biāo)識(shí)表明縱向碎裂傳播會(huì)形成一系列拋物線型臺(tái)階狀結(jié)構(gòu),在圖4m更明顯。在每層臺(tái)階上,會(huì)分布著一系列不同取向的納米結(jié)構(gòu)(圖4n-o),表明碎裂可以在不同維度同時(shí)傳播。圖4g-h和圖4j-k顯示裂紋傾向于先向下傳輸然后再向頂端傳輸,形成多達(dá)6層深度逐步遞減的拋物線型微米臺(tái)階結(jié)構(gòu)(圖4h)和數(shù)層“弧形”納米紋痕(圖4l)。在高度非突變(高度突變?nèi)鐖D4n)的微米臺(tái)階結(jié)構(gòu)上會(huì)生成大面積納米拋物線狀紋痕(圖4h-i),表明大尺度碎裂傳播過程中伴隨著一系列納米尺度的碎裂波前震動(dòng)。圖4c-d表明許多納米紋痕演變成HSFLs或珍珠狀納米顆粒,此現(xiàn)象將在圖9詳細(xì)表征和分析。
圖5 納米分層結(jié)構(gòu)。
納米分層結(jié)構(gòu) 圖5a-f展現(xiàn)了飛秒激光碎裂加工生成的旋轉(zhuǎn),Z字型和立體旋轉(zhuǎn)納米分層結(jié)構(gòu),分層結(jié)構(gòu)的高度由深到淺逐漸減少,分層高度最小可達(dá)5nm。傳統(tǒng)的飛秒激光液相加工由于衍射光學(xué)極限的限制通常只能實(shí)現(xiàn)微米或者亞微米精度的加工,碎裂工藝的引入給飛秒激光微納加工賦予了傳統(tǒng)光刻工藝層狀納米織構(gòu)的能力,極大地彌補(bǔ)了飛秒激光加工的納米制造能力不足,為極端環(huán)境下的超精細(xì)加工提供了一種新的思路。
圖6 納米紋痕陣列及其密度增強(qiáng)。
納米紋痕陣列及其密度增強(qiáng) 圖6a-f展現(xiàn)了連續(xù)4次螺旋狀en échelon微碎裂所生成的一系列納米紋痕,納米紋痕的高度由下向上逐漸遞增(圖6e)。圖6b和6e不同顏色的線條標(biāo)識(shí)了不同方向的納米紋痕,表明了納米紋痕的產(chǎn)生可以來自溝槽內(nèi)部和溝槽外部。圖6d和6g-i展現(xiàn)了兩端同時(shí)碎裂引起的納米紋在綠色箭頭和粉色箭頭區(qū)域交疊可以增強(qiáng)納米紋痕陣列密度的現(xiàn)象。圖6表明通過控制同一界面兩端碎裂可以實(shí)現(xiàn)納米紋痕密度增強(qiáng),通過控制碎裂引發(fā)點(diǎn)和碎裂強(qiáng)度還可以實(shí)現(xiàn)納米紋痕的交錯(cuò)。
圖7 碎裂分叉導(dǎo)致的結(jié)構(gòu)突變。
碎裂分叉 不同裂痕路徑的同時(shí)碎裂或相繼碎裂會(huì)導(dǎo)致結(jié)構(gòu)和碎裂紋痕的突變,如圖7所示。
圖8 碎裂路徑和生成的微米碎屑。
碎裂路徑和生成的微米碎屑 通過對(duì)部分碎裂溝槽側(cè)壁的分析,研究人員揭示了溝槽的碎裂路徑和產(chǎn)生碎裂的原因。圖 8a-i表明納米尺度和微米尺度的缺陷充斥著溝槽的側(cè)壁,裂痕會(huì)在脫離碎屑的邊緣指向性延伸。大量的碎屑脫離會(huì)產(chǎn)生大面積的裂痕,這些裂痕會(huì)相互交織覆蓋整個(gè)側(cè)壁,在沖擊波的作用下便會(huì)導(dǎo)致大面積的塊體脫離,最長(zhǎng)能達(dá)到約40微米,如圖 8j-r所示。碎屑的弧度邊緣表明了碎裂的曲向傳播。大面積碎裂的表面還存在一些其他碎裂痕紋(圖8j-l),表明同一個(gè)溝槽的碎裂可能經(jīng)歷一系列連續(xù)的“沖擊-脫離”事件,局部的小面積碎屑首先脫離,隨后發(fā)生大面積碎屑脫離。
圖9 碎裂紋痕納米尺度重構(gòu)。
碎裂紋痕納米尺度重構(gòu)正常情況下,碎裂紋痕的表面應(yīng)該是光滑的,但是實(shí)驗(yàn)發(fā)現(xiàn)在碎裂結(jié)構(gòu)的邊緣和相對(duì)密閉的空間生成了高頻周期結(jié)構(gòu)HSFLs,如圖9a-h所示。這表明沖擊波會(huì)對(duì)碎裂的納米紋痕進(jìn)行重構(gòu)。通過Raman測(cè)試,發(fā)現(xiàn)HSFLs結(jié)構(gòu)的形成與硅無定形化有關(guān)。由于沒有明顯的熱融化痕跡,材料的無定型化應(yīng)該是氣泡破裂產(chǎn)生的相對(duì)比較溫和的沖擊波導(dǎo)致的晶格缺陷和堆疊位錯(cuò)所引起的。當(dāng)納米紋痕間隔在100-200納米范圍之內(nèi),納米紋痕被重構(gòu)成珍珠項(xiàng)鏈狀納米顆粒陣列,如圖9i-p所示。此種結(jié)構(gòu)在低掃描速度下相對(duì)比較均勻和完整,而在高掃描速度下則比較混亂,表明改變掃描速度可以改變納米紋痕局部的應(yīng)力場(chǎng)。
圖10 飛秒激光碎裂加工制備多孔結(jié)構(gòu):固定掃描線間距(5微米),不同功率(700 mW和200 mW)和不同掃描速度下(0.2,0.5 和 1 mm/s)。
均勻多孔陣列的制備 一個(gè)新工藝的誕生必然伴隨著對(duì)其應(yīng)用性的探索,因此如何應(yīng)用激光碎裂加工工藝便成為了一項(xiàng)全新的挑戰(zhàn)。本文的科研人員探索出了飛秒激光碎裂加工的兩項(xiàng)應(yīng)用前景。一種是通過調(diào)控激光功率和掃描速度實(shí)現(xiàn)了均勻性良好的多孔材料制備,如圖10所示。利用不同激光能量(200和700mW)和低掃描速度(0.2mm/s)所獲得的表面形貌比較混亂且孔密度有限。當(dāng)掃描速度增加到0.5和1 mm/s時(shí),低能量(200mW)激光掃描會(huì)產(chǎn)生均勻的多孔結(jié)構(gòu),它們錯(cuò)落地分布在碎裂結(jié)構(gòu)之間。比較有趣的是孔的方向是傾斜的而不是垂直于襯底,這是由于大量氣泡產(chǎn)生所導(dǎo)致的激光折射和反射所引起的。在本文作者之前的International Journal of Extreme Manufacturing, 2020, 2, 015001報(bào)道中曾證實(shí)氣泡引起的光折射可以導(dǎo)致≥50°的入射角偏移 。在空氣環(huán)境下經(jīng)過多次飛秒激光掃描獲得的都是垂直多孔結(jié)構(gòu),此工作首次證實(shí)了飛秒激光碎裂微納加工制造傾斜多孔陣列的可行性。
圖11 干細(xì)胞形貌調(diào)控(a-c)和(d-f)在碎裂結(jié)構(gòu)上(加工參數(shù):功率700mW, 掃描速度0.2mm/s,掃描間隔5和15微米)經(jīng)72小時(shí)培養(yǎng)后的EB3干細(xì)胞熒光染色光學(xué)圖片和SEM圖。
干細(xì)胞形貌調(diào)控研究人員證實(shí)了碎裂結(jié)構(gòu)可以用于干細(xì)胞形貌調(diào)控。圖11展示了在碎裂結(jié)構(gòu)上(工藝參數(shù):激光能量700mW, 掃描速度0.2mm/s,掃描間隔5和15微米)經(jīng)72小時(shí)培養(yǎng)后的EB3干細(xì)胞熒光染色光學(xué)圖片和SEM圖。可以看出碎裂的凹陷結(jié)構(gòu)和未完全碎裂的側(cè)壁會(huì)使干細(xì)胞呈球形聚集,聚集的干細(xì)胞尺度受碎裂結(jié)構(gòu)局部特性影響,尺寸分布在20-240微米之間。
未來展望
飛秒激光沖擊波碎裂加工工藝是一種新穎的微納制造技術(shù),提供了一種快速高效的微納米梯度陣列結(jié)構(gòu)的制造方法,可實(shí)現(xiàn)精度達(dá)5nm的層狀納米結(jié)構(gòu)的制備,還具有多孔材料的制造能力,所制備的結(jié)構(gòu)在生物領(lǐng)域具有潛在的應(yīng)用前景。此工作可為地質(zhì)學(xué)和材料力學(xué)研究提供了很好的交叉學(xué)科素材。但是該工藝目前在可操控性方面仍很欠缺,有很大的改進(jìn)和提升空間。雖然加工過程很難控制,這種工藝無論在制造方法學(xué)還是結(jié)構(gòu)多樣性方面都展現(xiàn)了其獨(dú)特性,為極端條件下的加工提供了更多可能性。
微信
手機(jī)站
地址:武漢市東湖技術(shù)開發(fā)區(qū)黃龍山北路6號(hào)
電話:135-4505-0045 售后服務(wù):027-63496399
傳真:027-63496399 郵箱:wf@whlasers.com